
Theo Cachet, Christopher Dance, Julien Perez, NAVER LABS Europe

Efficient Imitation

for Robotics

Théo Cachet Julien Perez Christopher Dance

Research at NAVER LABS Europe

Contents

1. Motivation

2. The few-shot imitation problem

3. Demonstration-conditioned reinforcement learning (DCRL)

4. Benchmarking few-shot imitation performance

5. Why it works and what’s next?

1. Robots & Diverse Tasks

1. How to get robots to perform diverse tasks?

Options

Classical planning and control

Multi-task reinforcement learning

Natural language

Imitation learning

Few-shot imitation

Manual choice of objectives and constraints

Uncertainty and partial observation

Planning through multiple contact modes

Manual choice of reward function per task

Interesting but needs data relating words to physical states

Often requires too many demonstrations

Brittle if the state deviates from the demonstrated states

This talk

2. Few-Shot Imitation

2.1 Few-Shot Imitation Problem

a few demonstrations of a new,

previously unseen task

Find a policy which performs that

task effectively.

2.2 Problem Formulation

.

2.2 New Idea

Demonstration-Conditioned Reinforcement Learning (DCRL)

2.3 Related Work

Behaviour Cloning

Idea

Behaviour cloning uses supervised learning to learn a policy

input demonstrations

(state0, action0, state1, action1, …)
policy𝜃: state → action

learning

min𝜃 Σt prediction_loss(actiont, policy𝜃(statet))

2.3 Related Work

Behaviour Cloning

Issues

• Assumes actions in demonstrations

• Error compounding

good states

costly states

time horizon H = 4

2.3 Related Work

Behaviour Cloning

Few-Shot Imitation

• Earliest work on few-shot imitation (Duan et al., 2017) relied on behaviour cloning

• Learned a demonstration-conditioned policy

policy taking first demo’ as input

2.3 Related Work

Behaviour Cloning

Few-Shot Imitation

• Earliest work on few-shot imitation (Duan et al., 2017) relied on behaviour cloning

• Learned a demonstration-conditioned policy

policy taking first demo’ as input

Train to predict actions in second demo’

2.3 Related Work

Inverse Reinforcement Learning

Idea

• Infer reward function from demonstrations

• Train a policy to optimize that reward function

Issues

• Reward is non-unique

- May be many reward functions for which given trajectories are optimal

• Hard to improve if demo’s are suboptimal

Few-Shot Imitation

• Yu et al. (2019) extended inverse reinforcement learning to few-shot imitation

• Assumption: structure and dynamics of the environment do not change with task

• 40 hours of exploration of each test environment to overcome this assumption

Example. Look for a reward for

which the demo’s would be optimal

demo’s
infer

reward fn.
optimize

policy

2.3 Related Work

Comparison of few-shot imitation approaches

Desideratum Behaviour

Cloning

Inverse

RL

DCRL

(ours)

Copes without actions in demonstrations?

Improves on suboptimal demonstrations?

physically different?

No need to explore the test environment?

Copes when demonstrator is

for No need rewards for training tasks?

2.4 Implementation

Duan et al. ’17, Mishra ’18, James ’18, Dasari ’20)

1. Cross-demonstration attention. Process multiple demonstrations jointly.

2. Axial attention. Attend to one dimension of the input at a time (Ho et al. ’18).

Reduces time and memory from 𝑂 𝑇2𝑛2 to 𝑂 𝑇𝑛 𝑇 + 𝑛 for 𝑛 time series of length 𝑇

3. Performance of Few-Shot

Imitation Methods

3.0 Overview

• Introduce two benchmarks

… then demonstrate our claims that DCRL …

• Consistently outperforms behaviour cloning

• Learns error-recovery skills that transfer to new tasks

• Copes when the demonstrator has a different physical structure to the agent

• Outperforms suboptimal demonstrators

… and that cross-demonstration attention …

• Effectively resolves ambiguity, when a single demonstration is insufficient to identify a task.

3.1 Meta-World Benchmark

Meta-World (Yu et al., 2019) consist of 50 diverse robotic manipulation tasks

Example. Score goal, remove peg, open window, close door

Task. Reward function, success criterion, MuJoCo model with Sawyer robot

3.1 Meta-World Benchmark

Step 1. Train one policy per task

Finding. Cumulative reward (= return) is maximized by failing on some tasks!

Solution. Modified reward which acts like the time-derivative of the original reward

Step 2. Train one policy for all tasks with no demonstration input.

 Agent gets no information about the nature of the task at hand.

Finding. This policy has a 48% success rate!

 Devise a second benchmark where demonstrations are more critical to succeeding at a task.

high reward in states that

nearly-but-don’t-quite succeed

states meeting the

success criterion

optimal policy waits in in high-

reward states without succeeding

3.1 Navigation Benchmark

• Consists of 60 mazes, each of which corresponds to a single task.

• The task remains ambiguous even if we supply a single demonstration.

3.2 Navigation Benchmark

Several successful realizations of a single task

3.1 Benchmarks

Meta-World: 5-fold cross-validation

Navigation: fixed split of 50 training mazes and 10 test mazes

Natural if videos of human used as demonstrations

3.2 Comparison with Behaviour Cloning

We compare with d

3.2 Comparison with Behaviour Cloning

Method 1 demo input 5 demos input 1 demo input 5 demos input

DCBC 17% 24% 68% 68%

DCRL 48% 48% 77% 85%

DCBC+finetune 52% 68% 58% 58%

DCRL+finetune 70% 90% 73% 80%

Success rates

Meta-World Navigation

win win

3.2 Comparison with Behaviour Cloning

Method 1 demo input 5 demos input 1 demo input 5 demos input

DCBC 17% 24% 68% 68%

DCRL 48% 48% 77% 85%

DCBC+finetune 52% 68% 58% 58%

DCRL+finetune 70% 90% 73% 80%

Success rates

Meta-World Navigation

little change improves

3.2 Comparison with Behaviour Cloning

Method 1 demo input 5 demos input 1 demo input 5 demos input

DCBC 17% 24% 68% 68%

DCRL 48% 48% 77% 85%

DCBC+finetune 52% 68% 58% 58%

DCRL+finetune 70% 90% 73% 80%

Success rates

Meta-World Navigation

3.2 Comparison with Behaviour Cloning

Method 1 demo input 5 demos input 1 demo input 5 demos input

DCBC 17% 24% 68% 68%

DCRL 48% 48% 77% 85%

DCBC+finetune 52% 68% 58% 58%

DCRL+finetune 70% 90% 73% 80%

Success rates

Meta-World Navigation

helps! degrades

Why does DCLR outperform DCBC?

Present the same demonstrations to each agent DEMONSTRATIONS

easy to slip

easy to slip

DCBC slips and fails

DCRL slips too, but then it recovers!

3.3 DCRL learns error-recovery skills which it can transfer to new tasks!

3.4 Demonstrator Domain Shift

3.4 Demonstrator Domain Shift

3.4 Demonstrator Domain Shift

demo's 1 5 1 5

Sawyer 51% 51% 316 323

AMBIDEX 45% 48% 308 329

6% lower at worst nearly identical

3.5 Suboptimal Demonstrators

Demonstrations from humans may be suboptimal:

- Clumsiness, natural variability, noisy perception

Can DCRL perform tasks better than a suboptimal demonstrator?

Experiment

3.5 Suboptimal Demonstrators

• Success rates on Meta-World are shown

Remark on Interpretation Success rate of perturbed expert

S
u
c
c
e
s
s
 r

a
te

 o
f
D

C
R

L

3.6 Benefit of Cross-Demonstration Attention

Previous authors only considered one-shot imitation

Except James et al. (2018) who fed one demonstration at a time to their network

What if a single demonstration leaves a lot of ambiguity about the nature of the task?

4. Why does it work

and what’s next?

4.1 Why does it work?

Question. How does our DCRL implementation generalize to new tasks?

Intuition. Collections of demonstrations are close under the encoder mapping if and only if they

correspond to tasks with similar optimal policies.

t-SNE. Visualize high-dimensional data while preserving clustering

(van der Maaten and Hinton, 2008).

t-SNE(demonstrations)

for collections of 4 demonstrations of the 10 navigation test tasks

Different colours

correspond to different

mazes.

Z1 and Z2 are just arbitrary names for the axes of the t-SNE plot.

t-SNE(randomly_initialized_embedding(demonstrations))

for collections of 4 demonstrations of the 10 navigation test tasks

Even though this is a random

embedding, the data is

surprisingly clustered!

t-SNE(learned_embedding(demonstrations))

for collections of 4 demonstrations of the 10 navigation test tasks

Learning degrades the

clustering! Why?

t-SNE(learned_embedding(demonstrations))

for collections of 4 demonstrations of the 10 navigation test tasks

t-SNE(learned_embedding(demonstrations))

for collections of 4 demonstrations of the 10 navigation test tasks

t-SNE(learned_embedding(demonstrations))

for collections of 4 demonstrations of the 10 navigation test tasks

Can’t hope to draw

conclusions by looking at

10 mazes.

But interesting to see how

learning brings clusters

with similar optimal

policies together.

4.2 In Future

Better generalization:

☼

☼

☼

☼

Richer input:

☼ success / failure feedback

☼ natural language input

• DCRL was trained with only 40 or 50 tasks!

• Can we automatically generate 100s of diverse,

realistic but solvable tasks?

Phasic policy gradient (Cobbe et al., 2021)

Watch, Try, Learn (Zhou et al., 2019)

Sim-to-real and offline RL

4.3 Conclusion

DCRL is a new, third family of approaches to few-shot imitation

+ can improve on suboptimal demonstrations

+ can cope with demonstrator domain shift

+ does not need to explore the test environment

Disadvantage

- requires reward functions for training tasks – but maybe we can automatically generate them?

See also: Cachet, Dance and Perez, Demonstration-Conditioned Reinforcement Learning for Few-Shot Imitation, ICML 2021

Q & A

Thank You!

